Proteina Spike di SARS-CoV-2: Struttura, Funzione e Implicazioni per la Salute

La proteina Spike, una glicoproteina fondamentale nella struttura del virus SARS-CoV-2, ha suscitato grande interesse scientifico per il suo ruolo nelle infezioni e nei processi infiammatori. Approfondiamo insieme la sua composizione, le funzioni, e i suoi effetti sulla salute umana.

Che cos'è la proteina Spike?

La proteina Spike è una glicoproteina composta da due subunità, S1 e S2, unite da un ponte di-solfuro. Si tratta di un componente chiave del virus SARS-CoV-2, con diverse caratteristiche che ne determinano la pericolosità:

  • Antigene di superficie: È la "carta d'identità" del virus, essenziale per il riconoscimento da parte del sistema immunitario.
  • Receptor Binding Domain (RBD): Questa regione, presente sulla subunità S1, funge da chiave di accesso per permettere al virus di infettare le cellule umane.
  • Neurotossina: La Spike ha affinità con il tessuto nervoso, causando processi infiammatori patogenetici a carico dei nervi e del sistema nervoso.

Come funziona la proteina Spike?

La Spike attiva una serie di processi fisiopatologici che hanno implicazioni cliniche significative.

1. Attivazione della cascata coagulativa

La Spike si comporta come un fattore estrinseco della coagulazione, provocando:

  • Trombosi e fenomeni tromboembolici.
  • Coinvolgimento dei vasi del microcircolo, come i vasa vasorum e i vasa nervorum, con possibili conseguenze gravi, tra cui:
    • Paralisi del nervo ipoglosso (deviazione della lingua).
    • Paralisi del nervo vago (arresto cardiaco).
    • Tromboembolia polmonare.
    • Microischemie encefaliche.
    • Sciatalgie.

2. Altre implicazioni cliniche

La Spike è anche associata a:

Leggi anche: Proteine delle Uova in Polvere

  • pancreatite
  • diabete
  • epatiti
  • encefaliti e vasculiti (manifestazioni cutanee come porpora e petecchie).

3. Rilevazione tramite test diagnostici

La presenza della proteina Spike può essere rilevata attraverso test diagnostici specifici per IgG e IgM. Questi test permettono di identificare la presenza della proteina Spike, sia come antigene di superficie virale durante l’infezione da SARS-CoV-2, sia come prodotto di stimolazione delle cellule in seguito alla vaccinazione con mRNA.

In sintesi, la proteina Spike rappresenta una sostanza estranea e potenzialmente dannosa per il corpo umano.

Il Ruolo della Proteina Spike nel Danno Vascolare

Fin dalla prima ondata della pandemia, nella primavera del 2020, si è capito che Covid-19 poteva essere molto più di un’infezione delle vie respiratorie. Col passare dei mesi è diventato chiaro che, nei casi più gravi, il coinvolgimento di molti organi e tessuti diversi non deriva da un attacco diretto del virus, ma dal danno che questo provoca ai piccoli vasi sanguigni che li nutrono [1,2]. Uno dei più recenti ha messo in luce il ruolo della proteina spike in questo fenomeno.

SARS-CoV-2 è stato spesso rappresentato come un riccio ricoperto di aculei, le proteine spike, appunto, che si legano alle cellule attraverso un recettore presente sulla membrana di queste ultime, chiamato ACE2 [4]. Il lavoro pubblicato su Circulation Research mostra che il danno alle superfici interne dei vasi sanguigni, dette endoteli, può essere provocato da questa proteina da sola, anche senza il materiale genetico necessario per infettare le cellule. Ma sottolinea anche che, perché questo fenomeno avvenga, è indispensabile l’interazione tra la proteina spike e il suo recettore ACE2. Non è insomma un danno meccanico, come si potrebbe superficialmente pensare guardando le immagini in cui il virus scorre nel sangue con tutte le sue punte esposte.

Proteina Spike e Vaccini: Rischi e Benefici

Questo studio, mal interpretato da qualcuno, ha fatto pensare che attraverso lo stesso processo anche i vaccini potessero provocare danni ai tessuti. Se però i vaccini spingono le cellule a produrre la proteina spike, ed è questa la componente del virus che provoca i danni più gravi, questi prodotti non saranno pericolosi? Facendo produrre la proteina spike con le istruzioni portate da un vaccino a mRNA o a vettore adenovirale, non rischiamo di innescare le stesse reazioni?

Leggi anche: Cause dell'Aumento di Proteine nelle Urine

Prima di tutto, è importante capire la differenza tra l’infezione naturale e la vaccinazione. Nel primo caso, il virus entra nell’organismo tramite le vie aeree e infetta le cellule che le rivestono: si moltiplica al loro interno fino a romperle per andare a infettare altre cellule e via via raggiunge in enormi quantità il circolo sanguigno e si distribuisce potenzialmente in tutto il corpo [6].

I vaccini, invece, sono somministrati nel muscolo deltoide proprio perché questa posizione permette di evitare facilmente arterie e vene. La maggior parte del prodotto fluirà attraverso le vie linfatiche fino ai linfonodi, dove cellule specializzate presenteranno la spike codificata dai vaccini adenovirali o a mRNA alle cellule deputate a innescare la risposta immunitaria; una certa quota invece entrerà nelle cellule muscolari, che a loro volta produrranno la proteina come da istruzioni contenute nel vaccino e la esporranno ancorata nella loro membrana.

In realtà, recentemente, usando un metodo molto sensibile, alcuni ricercatori sono riusciti per la prima volta a identificare la proteina spike e la sua componente S1 nel sangue di 13 soggetti che avevano ricevuto la prima dose del prodotto di Moderna. Dopo 14 giorni, quando la risposta immunitaria è stata evocata, anche queste tracce sono sparite, così come non compaiono più dopo la seconda dose [8]. Anche questa è una grossa differenza con l’infezione naturale, in cui spesso è più difficile per le difese dell’organismo eliminare rapidamente l’enorme quantità di particelle virali in circolo.

Gli studi per l’autorizzazione del vaccino di Pfizer da parte di EMA mostrano che il 99% del vaccino resta nel sito di iniezione [10]. “È possibile naturalmente che in piccola quantità riesca a entrare nel circolo sanguigno, ma qualsiasi cellula riceva le istruzioni di produrre la spike, la esporrà sempre sulla sua superficie, non la riverserà nel sangue” spiega Lowe. Tutto quel che arriva al fegato, poi, viene degradato e distrutto.

Infine, mentre la risposta naturale all’infezione prevede la produzione di moltissimi anticorpi, alcuni dei quali possono avere affinità con componenti dell’organismo, provocando le reazioni autoimmuni che potrebbero essere alla base delle forme croniche di Covid-19 (la cosiddetta “long covid”), gli anticorpi prodotti in seguito alla vaccinazione sono diretti in maniera specifica contro spike e sono quindi una gamma molto più ristretta, che ha meno probabilità di sbagliare bersaglio e colpire l’organismo [12].

Leggi anche: Le Migliori Proteine Prozis

Struttura e Funzione delle Proteine Spike

I membri della famiglia del coronavirus hanno protuberanze acuminate che sporgono dalla superficie delle loro buste esterne. Quelle protuberanze sono conosciute come proteine spike. Sono in realtà glicoproteine. Ciò significa che contengono un carboidrato (come una molecola di zucchero). Le proteine appuntite sono ciò che danno il nome ai virus. Esempi di coronavirus includono quelli che causano la sindrome respiratoria acuta grave (SARS) e la sindrome respiratoria mediorientale (MERS). Le loro proteine a punta funzionano un po’ come grimaldelli che cambiano forma. Possono cambiare forma per interagire con una proteina sulla superficie delle cellule umane. Quelle proteine spike attaccano il virus a una cellula.

Il 19 febbraio 2020, i ricercatori hanno descritto la struttura 3-D della proteina spike sul nuovo coronavirus dietro la pandemia globale del 2020 . Ciò ha confermato che anche la proteina spike del nuovo virus è un mutaforma. Inoltre, si aggrappa al suo bersaglio sulle cellule umane da 10 a 20 volte più strettamente di quanto fa la proteina spike della SARS allo stesso bersaglio.

SARS-CoV-2 possiede un genoma di 29.881 basi azotate, che codifica per 9.860 aminoacidi. Allo stato nativo (cioè quando il virus non sta infettando nessuno), la proteina spike è in forma di precursore inattivo.

La proteina spike di SARS-CoV-2 è il principale meccanismo che il virus utilizza per infettare le cellule bersaglio; questa proteina è formata da due componenti principali: la subunità S1 e la subunità S2. La subunità S1 della proteina spike di SARS-CoV-2 è una regione molto flessibile e contiene il meccanismo chiamato RBD (dall’inglese receptor-binding domain, “dominio che lega il recettore”), attraverso il quale il virus è in grado di riconoscere e legare il recettore ACE2, che è la porta di ingresso del virus nelle cellule del nostro organismo.

Per via della sua fondamentale importanza nel processo di infezione, la proteina spike di SARS-CoV-2 è uno dei bersagli farmacologici più studiati.

Visualizzazione della Struttura della Proteina Spike

Una tra le proteine bersaglio del virus più interessanti a questo scopo è la proteina Spike (S). Questa proteina decora la superficie del virus formando delle protuberanze caratteristiche (facendolo sembrare una corona - da cui il nome “Coronavirus”).

Nel giro di due mesi dai primi casi di COVID-19, due gruppi di ricerca hanno determinato in modo indipendente la struttura della proteina Spike utilizzando la criomicroscopia elettronica [1],[2], facendo vedere che essa è costituita da tre catene uguali associate (si dice che è “trimerica”) e costituita da una regione che somiglia al gambo di un fiore con, al posto della corolla, la regione essenziale per il contatto con le cellule da infettare (chiamato RBD, dall’inglese receptor-binding domain, “dominio che lega il recettore”). Questa parte della molecola è flessibile come una banderuola al vento, ed è in grado di “cercare” nei dintorni il recettore ACE2 con cui interagire.

La struttura cristallografica del dominio che lega il recettore (RBD, colorato in rosa) di Spike unito alla parte extracellulare dell’enzima ACE2 (in blu chiaro) mostra in dettaglio quali parti delle due molecole sono coinvolte nell’adesione tra virus e cellula.

Strategie Farmacologiche e la Proteina Spike

Come nell’arte della guerra, per poter sconfiggere il nemico è fondamentale conoscere: com’è fatto il virus, qual è la sua forma? Come infetta le cellule umane? Come cresce, replica e si sviluppa nelle cellule ospite? Di che cosa ha bisogno per sopravvivere? A molte di queste domande è già stato risposto.

Una particella virale e tutto il macchinario molecolare che usa per replicarsi e sopravvivere nelle cellule ospite non è né visibile a occhio nudo né usando un classico microscopio ottico. È qui che entra in gioco la biologia strutturale, il cui scopo è proprio quello di identificare la struttura tridimensionale delle macromolecole biologiche, come le proteine e gli acidi nucleici, e di correlarla con la loro funzione fisiopatologica. Questa disciplina scientifica si basa su tecniche estremamente avanzate che consentono di visualizzare e analizzare molecole invisibili e di combattere invisibili agenti patogeni.

Nei prossimi paragrafi, partendo dalla descrizione dell’architettura complessiva del virus, verranno descritte le strutture delle tre protein di CoV-2 che sono considerate attualmente come i migliori bersagli farmacologici potenziali, ovvero la proteasi principale Mpro, la proteina Spike (S) e l’RNA polimerasi dipendente dall’RNA (RNA dependent RNA polymerase, RdRp). Verrà anche analizzata la relazione che lega le strutture di queste molecule alle loro funzioni fisiopatologiche.

Architettura Molecolare del virus SARS-CoV-2

Il primo isolamento documentato del CoV-2 a partire da campioni prelevati di pazienti infetti è stato realizzato all’ospedale Spallanzani di Roma1 e ha permesso di intraprendere lo studio del nuovo agente patogeno virale in diversi laboratori a livello internazionale. Le immagini delle particelle virali, isolate da persone di tutto il mondo, sono state ottenute usando un microscopio particolate che sfrutta elettroni anziché fotoni come sorgente di radiazione, ossia il microscopio elettronico a trasmissione (TEM). Le proprietà ottiche degli elettroni rendono possibile osservare oggetti fino a 1-10 000 volte più piccoli di 1 µm (10−6 m).

Ora sappiamo che il CoV-2 fa parte, più nello specifico, dei β-coronavirus, costituiti da un RNA a singolo filamento con senso positivo (v. Il mondo sorpredente del genoma di SARS-CoV-2), di circa 29,9 kilobasi (kb; 1 kilobase = 1000 basi). Una particella virale (il virione) di CoV-2 ha un nucleocapside composto dall’RNA genomico e ricoperto da proteine fosforilate che interagiscono con la membrana virale durante l’assemblaggio del virione, giocando un ruolo critico nel potenziare la replicazione del virus2.

L’RNA genomico e il nucleocapside sono avvolti da un doppio strato di fosfolipidi in cui sono immerse diverse proteine che svolgono ruoli cruciali per l’infezione e la replicazione: la proteina S, la proteina di membrana (M), l’emoagglutinina esterasi (HE) e la proteina del rivestimento (E).

Il Ruolo delle Proteasi Virali

Durante l’infezione della cellula ospite, il genoma virale agisce come RNA messaggero (v. Il mondo sorpredente del genoma di SARS-CoV-2) e dirige la sintesi di due grandi poliproteine (pp1a e pp1ab) che contengono al loro interno proteine più piccole necessarie alla produzione di nuove particelle virali all’interno delle cellule infette. Tale insieme di proteine comprende: un complesso di replicazione/trascrizione, diverse proteine strutturali necessarie a costruire virioni e due proteasi4,5.

La protease principale di CoV-2, che effettua il maggior numero di tagli, pesa 33,8 kDa e si chiama Mpro, altrimenti conosciuta come proteasi 3C-simile (simile alla chimotripsina). La Mpro è fondamentale per la replicazione virale ed è assente nelle cellule umane. Il meccanismo di azione di Mpro è simile a quello di altre proteasi. Tutte le proteasi possiedono due residui amminoacidici chiave: un residuo attivatorio (di solito un’istidina, His) che rimuove protoni da un gruppo ossidrilico o tiolico della catena laterale di un secondo residuo (di solito una serina, Ser, o una cisteina, Cys) che agisce come potente nucleofilo, ossia un potente donatore di elettroni.

La catalisi inizia con la deprotonazione del tiolo (sostanzialmente un alcol in cui l’atomo di ossigeno è sostituito da un atomo di zolfo) della Cys145 da parte dell’His41, che è seguita dall’attacco nucleofilico della cisteina de-protonata al carbonio del legame peptidico della proteina substrato. Viene quindi rilasciata una proteina virale più piccola con terminale amminico libero, il residuo di istidina, His41, della proteasi recupera la sua forma de-protonata e si forma un intermedio tioestere che collega il nuovo carbossi-terminale del substrato al tiolo Cys145. Successivamente, si forma un tioestere intermedio che lega il nuovo terminale carbossilico al tiolo della Cys145. Il tioestere è quindi idrolizzato per generare un terminale carbossilico sulla poliproteina rimanente, rigenerando l’enzima libero.

Identificazione di Inibitori della Proteasi Mpro

Jin e collaboratori hanno ottenuto la struttura cristallografica ad alta risoluzione della proteina Mpro in complesso con N3 (Figura 3), una molecola nota per legare e inibire la proteasi principale di altri coronavirus, come SARS-CoV e MERS-CoV (codice di accesso in PDB: 6lu7)6. L’analisi della struttura mostra che la proteina appare come dimero (Figura 3A), formato da due subunità identiche di 306 amminoacidi (A e B). I domini I e II hanno una tipica struttura a barile β in cui i filamenti β si dispongono in modo antiparallelo, mentreil dominio III è formato da cinque α-eliche. Il dominio III è unito al dominio II da un lungo ripiegamento (residui 185-200). Il sito di legame al substrato consiste in una cavità profonda che è posta in prossimità dell’interfaccia del dimero tra i domini I e II e contiene la diade catalitica Cys145-His41 (Figura 3C).

L’analisi della struttura ha consentito di capire che l’inibitore N3 lega fortemente la cavità dell’Mpro che normalmente alloggia il substrato, formando un legame covalente con la Cys145. Come la Mpro di SARS-CoV, quella di CoV-2 taglia le poliproteine pp1a e pp1ab in specifiche posizioni amminoacidiche, identificando i siti di taglio grazie a particolari “sequenze di base” nelle poliproteine7. Le posizioni dei residui che appartengono alle sequenze di base nelle poliproteine sono nominate a seconda della posizione relativa rispetto al sito di taglio ed è possibile identificarle in modo molto specifico (per i dettagli, vedere la legenda della Figura 3C e la referenza bibliografica n.

La sovrapposizione di sequenze delle Mpro di 12 coronavirus, inclusi CoV-2, SARS-CoV e MERS-CoV, mostra che i residui che rivestono la tasca che lega il substrato sono fortemente conservati9-12.

Screening Virtuale per Nuovi Composti

La struttura dell’Mpro di CoV-2 in complesso con l’inibitore N3 fornisce un modello e delle informazioni che possono essere usati per identificare altre molecole organiche capaci di legare la tasca catalitica dell’Mpro con più alta affinità, e condurre così allo sviluppo di nuovi farmaci antivirali specifici per il CoV-2. Una delle metodiche che è usata correntemente per identificare nuovi composti capostipiti è lo screening virtuale.

Lo screening virtuale è una tecnica computazionale che permette di analizzare grandi numeri di dati (highthrouput screening) di librerie di migliaia di composti chimici, per identificare molecole che abbiano maggiori probabilità di legare il bersaglio farmacologico. Il legame del composto chimico al bersaglio viene simulato in silico (ossia in maniera totalmente predittiva), riducendo fortemente i costi, il tempo e lo sforzo rispetto allo stesso screening eseguito sperimentalmente. Jin e collaboratori6 hanno usato proprio questa tecnica per identificare molecole con un volume corrispondente a quello della tasca catalitica dell’Mpro, partendo dalla sua struttura cristallografica in complesso con N3.

Tutti i composti, tipicamente piccole molecole organiche, conservate in una specifica banca dati, sono stati testati in silico per individuare quelli che, date le proprietà geometriche e chimiche, potessero essere potenzialmente in grado di legare la Mpro nella tasca catalitica. Lo screening dei composti viene effettuato tramite programmi dedicati. In questo caso è stato usato Glide (versione 8.2). Questa analisi ha portato all’identificazione di un composto, detto cinaserina, che ha mostrato il punteggio più alto e la modalità più sensata di legame alla tasca catalitica dell’Mpro.

La cinaserina è un antagonista della serotonina molto ben caratterizzato, che è stato testato preliminarmente sugli esseri umani negli anni ’60 del Novecento e che ha mostrato di inibire l’Mpro di SARS-CoV. Di rilievo è il fatto che la cinaserina non è tossica per le cellule umane, mostrando una citotossicità del 50% a concentrazioni più alte di 200 μM, mentre è capace di inibire l’Mpro di CoV-2 a concentrazioni più basse (IC50=125 μM).

Sviluppo di Farmaci Antivirali

Infatti, una volta che un nuovo composto è identificato, viene inizialmente somministrato ad animali da esperimento, e successivamente agli esseri umani nel corso di sperimentazioni cliniche per testarne sicurezza ed efficacia. Possono volerci dai 10 ai 15 anni, o anche di più, per completare tutte le fasi di una sperimentazione clinica prima di giungere allo stadio di licenza di un nuovo farmaco.

Una strategia alternativa per accelerare i tempi è quella di testare l’attività di molecole esistenti e già approvate per altre patologie. Jin e collaboratori hanno applicato questa strategia per trovare velocemente farmaci contro COVID-1914. Infatti, hanno analizzato oltre 10 000 composti come ligandi possibili della Mpro, inclusi farmaci già approvati, alcuni candidati per le sperimentazioni cliniche e anche dei prodotti naturali. Tra questi, hanno identificato un derivato del 5-fluorouracile, il Carmofur (1-hexylcarbamoyl-5-fluorouracil), che è risultato capace di legare ed inibire l’Mpro (Figura 4, a sinistra). Il Carmofour è stato già approvato come farmaco antitumorale ed è usato per trattare il cancro del colon retto fin dal 1980.

Sempre, Jin e collaboratori hanno risolto la struttura cristallografica dell’Mpro in complesso con il Carmofour, scoprendo le basi molecolari dell’efficacia del composto. In particolare, l’acido grasso di Carmofour lega la Cys145 attraverso un legame covalente, inibendo l’enzima (Figura 4, a destra).

La Proteina S come Chiave per l'Infezione Cellulare

I virus evolvono continuamente le proteine della loro superficie per potenziare l’interazione con i recettori sulle cellule ed entrare in esse con maggior efficienza secondo il modello chiave-serratura. La proteina S è una delle più interessanti e studiate tra quelle che contribuiscono al legame con il recettore dell’ospite e alla patogenesi virale. La proteina S “decora” la superficie del virus ed è responsabile per l’aspetto a corona della superficie virale, da cui il nome coronavirus. Questa è usata dal virus come una chiave per entrare nelle cellule ospite15. Agisce legando il recettore sulle cellule bersaglio, induce l’endocitosi dei virioni e catalizza la fusione tra le membrane cellulari e virali, assicurando l’ingresso dell’RNA genomico virale nel citoplasma delle cellule.

La proteina S rappresenta anche il bersaglio principale del sistema immunitario, attivandolo e inducendo la produzione di anticorpi. Per questa ragione è considerata il bersaglio primario di farmaci antivirali e vaccini. L’organizzazione strutturale di CoV-2-S è molto simile a quella delle proteina S di altri coronavirus come SARS-CoV e MERS-CoV. Essa è una proteina trimerica transmembrana formata da tre unità identiche, dette protomeri (Figura 5).

Ogni protomero di CoV-2-S (per esempio, quello blu nella Figura 5) comprende due subunità funzionali: una responsabile per il legame al recettore sulle cellule bersaglio (la subunità S1) e l’altra coinvolta nella fusione con la membrane cellulare (subunità S2). La CoV-2-S, come varie proteine spike di altri SARSr-CoV, è tagliata da proteasi cellulari al confine tra le subunità S1 ed S2, generando due regioni separate che rimangono legate in modo non covalente nella cosiddetta “conformazione di prefusione”. Infatti, CoV-2-S esiste in due differenti conformazioni, chiamate “su” (up) e “giù” (down) (Figura 6B). Nella conformazione “giù”, la CoV-2-S non può mediare la fusione della CoV-2 con la membrana della cellula ospite.

tags: #proteine #spike #covid #struttura #e #funzione

Scroll to Top